
The design of a Disk Resource Manager
(and its relationship to GSDAs and File Replication)

Arie Shoshani, LBNL

October, 2000

A Disk Resource Manager (DRM) is a component that controls the use of a shared disk
cache in a data grid. As a shared disk, it can be used by multiple clients and therefore a
DRM usually has some policy that determines how much of the disk cache can be used
by a given client, how long to keep a file in disk once it was cached, and which files to
remove when space is needed.

A typical scenario

To illustrate the functionality of a DRM, consider the typical scenario where a client
wants a file to be moved from a source DRM (sDRM) to a target DRM (tDRM). By a
client we mean an application program, or another agent, such as a “request manager”,
acting on behalf of the user. Before we consider the question of allocating space, we
need to address an important question: which component will initiate the file transfer.
There are 3 possibilities:
a) The tDRM “pulls” the file (e.g. by doing an FTP-get”).
b) The sDRM “pushes” the file (e.g. by doing an FTP-put).
c) The client initiates a 3rd party transfer from sDRM to tDRM (assuming this capability
is available).

The considerations of “pull vs. push” were already discussed quite well by Andy
Hanushevsky in the document “Data Management in Data Grids”. We came to the same
conclusion of having a “pull” model; we had similar reasons for that. Assuming that a
DRM manages a disk cache under some local site control, that site will have its own
security and policy requirements. Thus, it makes sense that the site manager will not
want to give permission to external agents to write into its space. By using the pull
model, the DRM is in full control of its space.

Now, assuming a pull model, the scenario is then changed to the client making a request
to the tDRM to get a file from the sDRM. We assume here that the client (such as a
“request manager”) already checked with the replica catalog as to where to get the file
from, and it has a source URL (sURL) for it. The client also provides the target URL
(tURL) – the location where the file should be moved to. The following actions will take
place:

a) The client asked the tDRM to get a file from sURL to tURL.
b) tDRM tries to allocate space for the file. If no space is available, or it is otherwise
busy, it can choose to queue the request for later execution.
c) If space is found, the tDRM contacts the sDRM with a request to pin this file.

d) If sDRM has the file (the file could have been removed in the meantime), it returns OK
status. Otherwise, it returns fail.
e) Assuming the file was pinned by sDRM, then tDRM pulls the file (e.g. with a grid-ftp
GET). When completed, the DRM checks that the file moved properly.
f) tDRM notifies the client that the file is available. If the request was a non-blocking
call, tDRM calls the client. Alternatively, the client can sent tDRM a status request to
find when the file arrives.
d) tDRM notifies sDRM that the file can be “released”. It is the choice of sDRM whether
to keep the file in the cache, or actually remove it. Typically, files are not removed till
space is needed.

Discussion of various functions

There are several issues that have to be dealt with when designing the DRM
functionality. These include getting a file into the disk from another source, pinning a
file, storing a file by a client, how to enforce time outs, queuing requests by the DRM,
registration of files in the replica catalog, space reservations, status of a file transfer
request, and collecting and providing statistics on the cache availability and usage. We
describe each below. These functions form the basis for a DRM IDL provided in the
Appendix.

1. Getting a file into the disk from another source
To recap the scenario above, a target DRM must be able to support a request for getting a
file from another disk into its disk cache. It is assumed that the location of the file is
known to the client because it is registered with the replica catalog. Normally, a file will
be pulled from another (source) DRM, but in principle files can be pulled from any
source as long as it supports some file transfer protocol. A request to the DRM to get this
file requires that the DRM makes space for the file in the disk cache, if necessary by
removing other unused files, requesting that the file at the source DRM be pinned (if such
a capability exists), initiate a file transfer from the source to its disk, monitoring the
progress of the transfer, and notifying the caller when the file has been fully transferred.
After a file has been transferred, the DRM may register the file with the file catalog, so
that other clients can use it. A requested file may be found in the DRM’s disk cache
because another user has previously requested it. In this case, it is wise to share the file.
We will discuss later the method for sharing files without copying them into each client’s
space.

2. Pinning a file
Assuming that a (source) DRM can hold files temporarily, it is necessary to ask it to pin a
file before a file transfer from it is initiated. This is part of facilitating file sharing
between clients. Of course, one can skip this step, but then we take a chance that the file
may be removed in mid transfer, or may not be there when the transfer is initiated. This
is true, even if the source is well behaved in that it removes its entry from the replica
catalog, because of an obvious race condition: the client may have gotten the replica
reference and did not start the transfer by the time it is removed. If a source system has
no DRM, one can assume that the file will be there for a sufficiently long time and it is

safe to perform a file transfer without pinning. Usually, a file being pinned is expected to
be found in the cache, but there is no guarantee of that. Furthermore, it is up to the local
DRM’s policy as to how long it keeps a file pinned. That may be governed by a time out
policy, discussed next.

3. Time-outs
A well behaved client is expected to release a file after it is done using it. However, a
DRM cannot rely on that, and must have a policy for removing files. It is up to the local
administrator of each DRM to determine the policy for a time-out of a file. There may be
a different time-out policy for files transferred into the DRM for the client’s use from the
time-out policy for file pinned by the DRM. A time-out policy is a best-effort promise
that a file will be in cache for the time out period, but it is not a guarantee. Therefore
DRMs need to be designed to handle such mishaps. Beyond the time-out period, the file
may or may not be found in cache, depending on its sharing by other clients, and the need
to release space. The time out enforcement is therefore per_file_per_user. The time-out
left can be reported to the client when the file is cached or pinned, or later in response to
a status, but it must be understood that it is not a guarantee.

4. Storing a file by a client
Another function of a DRM is to store files that clients generate. Typically, such files are
stored temporarily and then transferred to other sites, perhaps a tape system. Thus, there
is no need to register such files in the replica catalog. This function is similar to getting a
file as far as making space for the file, but the DRM does not have to pin a file a the
source. The client, who is obviously the owner of the file, is responsible to register it
with the file catalog, if he/she chooses to do that.

5. Queuing requests
In a busy system, it is possible that a file transfer request cannot be accomplished at the
time it is requested, most likely because space is not found immediately, or because a
limit on the number of concurrent transfer that the DRM can perform. In this case, if an
error “system busy” is returned to the client, the client will try repeatedly until the request
is accepted or it may give up. To avoid this situation, a DRM can help by queuing
requests. Rather than return a “system busy” response, it can queue the request, and
return a status with an estimated time before the file will be scheduled for trnasfer. The
client can then accept the estimated time or abort the request. This feature is not essential
for a DRM, but having it can cut down on repeated requests and can be used to enforce
policy and fairness of service of clients’ requests.

5. Registration of files in the replica catalog
If the DRM is managing a shared disk cache, then any file stored in that system can
potentially be needed by other clients. Thus, after a file is transferred to the DRM’s disk,
it should be registered in the Replica Catalog, so that other clients know about its
existence. The choice to register a file is part of the DRM’s policy. Also, the frequency
of registration is a local policy. The frequency of registration can be either immediate
after a file was transferred, or one can have a policy to update the replica catalog
periodically. Similarly, before a shared file is removed by DRM (to make space for new

files) the DRM should remove the replica entry from the file catalog. In this case, it is
wise to remove the replica entry before the file is physically removed, but as mentioned
in point 2 above, this does not guarantee that the file will not be requested after is
removed.

6. Space reservations
Space reservations can be a problematic function to provide. On the one hand, it makes
sense for clients to make plans to use a certain amount of space at a certain time for a
certain duration. On the other hand, such reservations can be very wasteful of space,
since a DRM must keep the space unused to guarantee a reservation. It seems that for
reservations to be effective, some kind of a cost must be charged to the clients, so they
have an incentive to act responsibly. A responsible behavior means that the clients use
the space assigned as soon as it is assigned, and release it as soon as they do not need the
space. Another aspect of space assignment is how to advertise or describe the available
space, since it is a function of time. This information is needed for request planning. At
a minimum every DRM supporting reservations should be able to respond to a request for
space reservation for a certain time and duration either positively or suggest the earliest
time that such a reservation can be made.

7. Status of a file transfer request
After a request for file caching is made, the DRM should be capable of providing the
status of the request. This includes information on whether the request is still queued,
whether the transfer is in progress, and how much of the file was transferred so far. In
case that the request is still queued, a time estimate should be provided as to when the
request will be executed.

8. Providing statistics on the cache availability and usage
This functionality is necessary in order for clients of the DRM to plan how to use the
DRM. This includes statistics on past usage of the cache and the size of its request queue
over time. Such statistics could be used to determine if the cache is overused and causes
a bottleneck in the data grid.

9. Sharing a file in the DRM’s cache
When a request for a file is made to a DRM, it should check first if the file is already in
the cache, and can be shared (assuming the file is “read-only). For this reason, the DRM
should keep track of the logical file name of files it keeps. Similarly, a logical file name
should also be provided by the client when it request a “get file”.

How does a DRM facilitate sharing of a file? Suppose we have 2 clients interested in a
file. If the file is stored in the tURL provided by the first client, then another copy of the
file must be made into the tURL provided by the second client. If we put he file in a
shared area, the first client could delete the file while the second client is accessing it.
Thus, a shared file should be under the control of the DRM, and stored in a disk partition
that belongs to the DRM. Our planned solution is to link (i.e. a unix link) the tURL to the
file stored in the DRM’s cache. This solution also permit advertising the existence of the
file in the replica catalog.

10. Coordinating on the transfer protocol
In discussions with people from Fermi (mostly with Rich Wellner) on the HRM
(Hierarchical Resource Manager – that manages file staging from tape to a shared disk)
interface and implementation, it was suggested that the coordination of a transfer protocol
is made as part of the interaction between the client and the HRM. This was eventually
made part of the HRM IDL. The idea is that the client provides a list of protocols in
order of preference that it can support (e.g. HTTP, GRID-FTP, NCFTP, …), and the
HRM respond with the first protocol from that list it can support. We think that the same
concept could be useful in the communication between DRMs. This leaves the option for
local sites to set up their preferred protocols and security requirements.

11. Security concerns
Since tDRMs and sDRMs communicate with each other, and perform requests from the
grid services to transfer files, it is easiest if the DRMs are authenticated as special trusted
agents. This will prevent the need for each user to be authenticated in each DRM site.
However, this puts the burden of authenticating a user and checking his/her permission to
get a file on some intermediary agent.

The coordination between the DRMs is only control information (such as “pin a file”
“release a file”, “status of a file”, etc.) It is not clear to me whether this information
should be treated as secure. On the other hand, file transfers should definitely be done
securely, including when they are moved by trusted agents.

The relationship to GSDAs

In our discussions with Andy, we found that the concepts of a DRM are well suited to
GSDAs (Grid Storage Domain Agent). GSDAs are the same concept as the “known grid
node” used in Doug Olson’s white paper on file replication. The main additional
function that a GSDA performs in addition to a DRM is the “redirection” function. The
use of a GSDA permits the registration of a file in the replica catalog as a “durable URL”
(Doug’s terminology) or “storage domain locations” (Andy’s terminology). This
understanding will permit GSDAs to use the same interface as a DRM, except that the
client need to be prepared to handle “redirection”.

The relationship to File Replication Service

Suppose there is a need to replicate a set of files. This may be a periodic need of bulk
replication (as Doug suggested) or dynamic need as files move around because of clients
demand. I view this as similar needs, except that we might want to introduce the concept
of a “permanent replica” – i.e. a replica under the control of the administrator only.
Dynamic replicas are under the control of the DRM (or HRM) that stores them.

As Doug suggested, a “File Replication Service” may perform several functions in
addition to actually request to transfer files, such as check that the file does already exist
in the targeted site, and register file in the replica catalog after the file is transferred.

However, the actual file transfer can be performed with DRMs and HRMs. The “Stage a
file to a local grid node” is a request to an HRM. Once the file has been staged, the file
transfer request could be coordinated with DRMs. The DRMs allocate the space and pin
files as described above, and use the grid transfer service (such as grid-ftp) to pull the
files. Again, if GSDAs are available, then the communication is with a GSDA that
redirects the transfer request to a DRM.

I believe that PPDG will benefit from a common interface definition for DRMs and
GSDAs. Each local system can be as simple as a thin layer on top of an FTP server, or a
sophisticated as managing multiple DRMs and HRMs. The experience with using a
single HRM interface to access radically different systems (HPSS at LBNL, and SAM-
Enstore at Fermi) illustrates this point.

Acknowledgement

This document is a result of many discussions I had with Alex Sim and Andreas Mueller
at LBNL, as well as a day long meeting with Miron Livny, and another meeting with
Andy Hanushevsky.

Appendix: a proposed DRM IDL (draft)

// Andreas Mueller Amueller@lbl.gov
// Arie Shoshani shoshani@lbl.gov
// Alex Sim Asim@lbl.gov
// Lawrence Berkeley National Laboratory
// Octoberber 2000
// Purpose: defines interface between Disk Resource Manager (server) and
clients

#ifndef DRM_IDL
#define DRM_IDL

//#include <ppdgDefs.idl>

struct timer {
 short hour;
 short minute;
 short second;
};

struct DRMFileInfo {
 string logFileName;
 string UID;
};

mailto:Amueller@lbl.gov
mailto:Amueller@lbl.gov
mailto:Amueller@lbl.gov

enum drmStatus {
 DRM_FILE_EXISTS,
 DRM_TRANSFER_IN_PROCESS,
 DRM_FILE_TRANSFER_DONE,
 DRM_FILE_TRANSFER_FAILED,
 DRM_NOT_ENOUGH_SPACE,
 DRM_FILE_NOT_IN_SOURCE,
 DRM_RELEASE_DONE,
 DRM_NOT_REQUESTER,
 DRM_RELEASE_FAILED,
 DRM_PURGE_DONE,
 DRM_PURGE_FAILED,
 DRM_DISK_DOWN,
 DRM_DISK_ERROR,
 DRM_T_DISK_DOWN,
 DRM_T_DISK_ERROR,
 DRM_REQUEST_QUEUED,
 DRM_REQUEST_FAILED,
 DRM_FILE_TIMED_OUT
};

enum drmPINStatus {
 PINNED,
 PINNING_FOR_USER_REFUSED,
 PINNING_FAILED,
 PIN_RELEASE_FAILED,
 ALREADY_PINNED_BY_USER,
 FILESIZE_MISMATCHES
};

interface DiskResourceManager {
 void hello();
 boolean areYouAlive();

 boolean getFile(in DRMFileInfo fileUID,in string S_URL,
 in string T_URL, in double fileSize);

 boolean getFileNonBlock(in DRMFileInfo fileUID, in string S_URL,
 in string T_URL,in double fileSize, out string client_ref);
 boolean abortTransfer(in DRMFileInfo fileUID, in short
 ftpProcessnumber, in string T_URL);

 void getStatus(in DRMFileInfo fileUID, in string T_URL,
 out double transfered_bytes, out double remain_bytes);

 boolean releaseFile(in string S_URL,in string UID);
 boolean pinFile(in string S_URL, in string UID, out short PIN);
 double getPIN(in string S_URL, in string UID);
};

#endif // DRM_IDL

	Discussion of various functions
	11. Security concerns
	The relationship to GSDAs

	The relationship to File Replication Service
	Acknowledgement

